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Beam Propagation Analysis of a Tapered Proton-
Exchanged Lithium Niobate Optical Waveguide

Pei-Kuen Wei, Student Member, IEEE, Hwei-Yuan Liu, and Way-Seen Wang, Member, IEEE

Abstract—A simulation of tapered lithium niobate optical wave-
guide fabricated by the proton-exchanged method is presented.
The Fresnel equation with an initial input field distribution
is solved numerically using the semivectorial-polarized finite
difference method and the Runge-Kutta method. The calculated
and experimental results are in good agreement.

L. INTRODUCTION

N THE BASIS of the second harmonic generation,

compact solid-state laser diodes have been widely used
as an efficient light source for optical storage and bio-medical
applications. In order to improve the efficiency of second
harmonic generation, it is important to increase the coupling
from the laser diode to the waveguide in the endfire configu-
ration. Recently, the use of a tapered proton-exchanged (PE)
waveguide in lithium niobate to reduce the coupling loss has
been reported [1]. However, theoretical analysis of the device
performance was not given. In this work, the beam propagation
method with a semivectorial approximation [2], [3] is used to
analyze the tapered waveguide. Good agreements between the
calculated and measured coupling losses are obtained.

The numerical methods commonly used for solving the
Fresnel equation are the fast Fourier transform method (FFTM)
[4] and the finite difference method (FDM). However, it was
reported that the equation discretized by FDM is more efficient
and stable than that by FFTM [5], [6]. Usually, FDM starts
with a discritization of the Fresnel equation, including both
the transverse and the propagation components, by the cen-
tral difference scheme [5]-[7]. However, the Crank—Nicolson
scheme for the propagation component is implicit, which
takes a lot of computing time, especially when the full-wave
analysis is considered. To save the computing time, the implicit
Crank-Nicolson is replaced by the explicit Runge—Kutta fourth
order formulas [7]. It is well known that the Runge-Kutta
method is derived mainly for ordinary differential equations,
however, in this work, it is shown that this method is also good
for partial differential equations such as the Fresnel equation.

II. THEORY

Consider a rectangular waveguide of width W, height H,
and refractive index n, embedded in a substrate of refractive
index ng. as shown in Fig. 1. With the assumption that
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the guided optical wave is slowly varying and paraxially
propagating, the Helmholtz equation can be reduced to the
Fresnel equation as given by
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ko is the free space wave number, & is the propagating
field, and n{z,y, 2) is the index distribution. As the proton-
exchanged waveguides can support only the extraordinary-
polarized (i.e., y-polarized in this work) waves [8], The
semivectorial-polarized finite difference approximation for the
second order derivatives of E can be written as follows
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Note that (4) and (5) have taken into account the large index
discontinuities along the z and y directions of the waveguide
cross section. For the quasi-TE modes, similar results can be
obtained by interchanging = and y. With the above discretiza-
tion, (1) becomes a system of first order differential equations.
Obviously, there are a lot of numerical methods can be used to
obtain a solution. For simplicity, we use the well known fourth
order Runge-Kutta method. The reason can be understood
by considering the right hand side of (1). When f is zero,
(1) becomes an ordinary differential equation. Usually, the
Runge-Kutta method is used to obtain a numerical solution.
However, when g is zero, (1) is reduced to a parabolic partial
differential equation. The Crank—Nicclson scheme is used
instead. In the case of the Fresnel equation, both f and g in
(1) are nonzeros, neither of the above methods can be applied.
However, the waveguiding characteristic are described by
the function g, which is the dominant part of the equation.
The differential terms involving f are only served as the
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Fig. 1. Typical embedded waveguide structure.

"couplings" between different ordinary differential equations
when the x and y coordinates of the Fresnel equation are
discretized. Hence, it is reasonable to discretize (1) as a system
of ordinary differential equations.

The stability and accuracy of our program were tested using
some typical values of the previous experiment [1] as given
by n, = 2.2, ny, = 2.32, W = 1.8 pm, and H = 0.36 um.
The grid sizes are Az = 0.1 um, Ay = 0.05 pm, and
Az = 0.025 pym. The power conservation of the fundamental
mode propagating a distance of 1 cm is less than 0.1%. Also,
the propagation constant of the fundamental mode is calculated
to be 16.7874 by our method and 16.7812 by the finite element
method. These two tests show that the accuracy and stability
of our method are good enough for the beam propagation
analysis.

III. SIMULATION

Consider a tapered proton-exchanged lithium niobate wave-
guide as shown in Fig. 2. The incident beam emitted from
a laser diode has a width of 4 pm and a height of 1.6 pm.
The total length of this waveguide is 20 mm. The waveguide
can be divided into an endfire coupling section, a tapered
section, and a single-mode waveguide section. The dimensions
of the coupling section are 4 ym x1.5 um x1.1 mm (width
x depth x length), and the single-mode waveguiding section
are 1.8um x<0.36um x 18 mm. The tapered section consists of
a width taper and a depth taper. The width taper narrows the
waveguide from 4pum to 1.8um over a length of 800um. The
depth taper takes the waveguide from 1.5um up to 0.36pm
over a length of 60pm. In our simulation, for simplicity, only
the power transfer occurs in the tapered section is considered.
The propagating fields in the tapered section at z = 200, 400,
800, and 950 pm are shown in Fig. 3. As can be seen from the
figure, the propagating field does change its size in width first,
then depth, and finally, fit into the single-mode waveguide.
The coupling loss between the laser diode and the single mode
waveguide is calculated to be 1.39 dB with the taper and 2.29
dB without. Similarly, the experimental results [1] are 1.3dB
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Fig. 2. Hlustrations of the tapered proton-exchanged lithium niobate wave-
guide. (a) top view and (b) side view. The waveguide is divided into an endfire
coupling section (Section I), a tapered section (Section II), and a single-mode
waveguide section (Section III).
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Fig. 3. Contour plots of optical power distributions within the tapered section
at different posmons (2)200 pem, (b) 400 pem, (c) 800 pm, and (d) 950 pm.
The guiding region is shown by dashed hnes and contour levels are at 10%
intervals of the maximum field.

and 2.3 dB. Obviously, the theoretical results agree quite well
with those obtained experimentally.

IV. CONCLUSION

In conclusion, the tapered proton-exchange lithium niobate
waveguide for the reduction of the edge coupling loss is suc-
cessively simulated. The calculated results show that the com-
bination of the Runge-Kutta and the semivectorial-polarized
finite difference method is a simple and effective way for
beam propagation analysis. Further application on the beam
propagation analysis of other waveguide devices is of great
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interest in the future. Moreover, Runge—Kutta method is not
the only way to find the numerical solution of the system of
first order differential equation discretized from the Fresnel
equation, the other methods, such as the predictor corrector
method, can also be used. Detailed comparison of the results
will be discussed in the future.
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