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Beam Propagation Analysis of a Tapered Proton-

Exchanged Lithium Niobate Optical Waveguide
Pei-Kuen Wei, Student Member, IEEE, Hwei-Yuan Liu, and Way-Seert Wang, Membter, IEEE

Abstract-A simulation of tapered lithium niobate optical wave-

guide fabricated by the proton-exchanged method is presented.
The Fresnel equation with an initial input field distribution

is solved numerically using the semivectorial-polarized finite

difference method and the Runge-Kutta method. The calculated
and experimental results are in good agreement.

I. INTRODUCTION

o

N THE BASIS of the second harmonic generation,

compact solid-state laser diodes have been widely used

as an efficient light source for optical storage and bio-medical

applications. In order to improve the efficiency of second

harmonic generation, it is important to increase the coupling

from the laser diode to the waveguide in the endfire configu-

ration. Recently, the use of a tapered proton-exchanged (PE)

waveguide in lithium niobate to reduce the coupling loss has

been reported [1]. However, theoretical analysis of the device

performance was not given. In this work, the beam propagation

method with a semivectorial approximation [2], [3] is used to

analyze the tapered waveguide. Good agreements between the

calculated and measured coupling losses are obtained.

The numerical methods commonly used for solving the

Fresnel equation are the fast Fourier transform method (FFTM)

[4] and the finite difference method (FDM). However, it was

reported that the equation discretized by FDM is more efficient

and stable than that by FFTM [5], [6]. Usually, FDM starts

with a discritization of the Fresnel equation, including both

the transverse and the propagation components, by the cen-

tral difference scheme [5]–[7]. However, the Crank–Nicolson

scheme for the propagation component is implicit, which

takes a lot of computing time, especially when the full-wave

analysis is considered. To save the computing time, the implicit

Crank–Nicolson is replaced by the explicit Runge–Kutta fourth

order formulas [7]. It is well known that the Runge–Kutta

method is derived mainly for ordinary differential equati~

however, in this work, it is shown that this method is also good

for partial differential equations such as the Fresnel equation.

II. THEORY

Consider a rectangular waveguide of width W, height H,

and refractive index ng embedded in a substrate of refractive

index n~. as shown in Fig. 1. With the assumption that
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the guided optical wave is slowly varying and paraxially

propagating, the Helmholtz equation can be reduced to the

Fresnel equation as given by

2jkon.~ = f +;9

where

(1)

(2)

g = k; [n2(z,g, z) - n~]E, (3)

/c. is the free space wave number, E is the propagating

field, and n(z, y, z) is the index distribution. As the proton-

exchanged waveguides can support only the extraordinary-

polarized (i.e., y-polarized in this work) waves [8], The

semivectorial-polarized finite difference approximation for the

second order derivatives of E can be written as follows

6’2Ei,j Ei+I,j – 2Ei,j -+ Ei–1,3
~z2 = AX2

(4)
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AY2

(5)

Note that (4) and (5) have taken into account the large index

discontinuities along the x and y directions of the waveguide

cross section. For the quasi-TE modes, similar results can be

obtained by interchanging x and y. With the above discretiza-

tion, (1) becomes a system of first order differential equations.

Obviously, there are a lot of numerical methods can be used to

obtain a solution. For simplicity, we use the well known fourth

order Runge–Kutta method. The reascm can be understood

by considering the right hand side of (l). When ~ is zero,

(1) becomes an ordinary differential equation. Usually, the

Runge–Kutta method is used to obtain a numerical solution.

However, when g is zero, (1) is reduced to a parabolic partial

differential equation. The Crank–Nicclson scheme is used
instead. In the case of the Fresnel equation, both f and g in

(1) are nonzeros, neither of the above methods can be applied.

However, the waveguiding characteristic are described by

the function g, which is the dominant part of the equation.

The differential terms involving ~ are only served as the
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Fig. 1. Typical embedded waveguide structure.

“couplings” between different ordinary differential equations

when the x and y coordinates of the Fresnel equation are

discretized. Hence, it is reasonable to discretize (1) as a system

of ordinary differential equations.
The stability and accuracy of our program were tested using

some typical vahtes of the previous experiment [1] as given

by n. = 2.2, ng = 2.32, W = 1.8 ,um, and H = 0.36 ~m.

The grid sizes are Ax = 0.1 ~m, Ay = 0.05 ~m, and

Az = 0.025 pm. The power conservation of the fundamental

mode propagating a distance of 1 cm is less than O.lYo. Also,

the propagation constant of the fundamental mode is calculated

to be 16.7874 by our method and 16.7812 by the finite element

method. These two

of our method are

analysis.

tests show that the accuracy and stability

good enough for the beam propagation

III. SIMULATION

Consider a tapered proton-exchanged lithium niobate wave-

guide as shown in Fig. 2. The incident beam emitted from

a laser diode has a width of 4 #m and a height of 1.6 ~m.

The total length of this waveguide is 20 mm. The waveguide

can be divided into w endfire coupling section, a tapered

section, and a single-mode waveguide section. The dimensions

of the coupling section are 4 ~m x 1.5 ~m x1.1 mm (width

x depth x length), and the single-mode waveguiding section

are 1.8p,m x 0.36,u,m x 18 mm. The tapered section consists of

a width taper and a depth taper. The width taper narrows the

waveguide from 4~m to 1.8~m over a length of 800~m. The

depth taper takes the waveguide from 1.5~m up to 0.36~m

over a length of 60&m. In our simulation, for simplicity, only

the power transfer occurs in the tapered section is considered.

The propagating fields in the tapered section at z = 200, 400,

800, and 950 pm are shown in Fig. 3. As can be seen from the

figure, the propagating field does change its size in width first,

then depth, and finally, fit into the single-mode waveguide.

The coupling loss between the laser diode and the single mode

waveguide is calculated to be 1.39 d13 with the taper and 2.29

dB without. Similarly, the experimental results [1] are 1.3dB
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Fig. 2, Illustrations of the tapered proton-exchanged lithium niobate wave-
guide. (a) top view and (b) side view. The waveguide is divided into an endfire
coupling section (Section I), a tapered section (Section II), and a single-mode
waveguide section (Section 111)
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Fig. 3. Contour plots of optical power distributions within the tapered section
at different positions: (a)200 pm, (b) 400 #m, (c) 800 #m, and (d) 950 ~m.

The guiding region is shown by dashed lines and contour levels are at 10%
intervals of the maximum field.

and 2.3 dB. Obviously, the theoretical results agree quite well

with those obtained experimentally.

IV. CONCLUSION

In conclusion, the tapered proton-exchange lithium niobate

waveguide for the reduction of the edge coupling loss is suc-

cessively simulated. The calculated results show that the com-

bination of the Runge–Kutta and the semivectorial–polarized

finite difference method is a simple and effective way for

beam propagation analysis. Further application on the beam

propagation analysis of other waveguide devices is of great
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interest in the future. Moreover, Runge–Kutta method is not

the only way to find the numerical solution of the system of

first order differential equation discretized from the Fresnel

equation, the other methods, such as the predictor corrector

method, can also be used. Detailed comparison of the results

will be discussed in the future.

[1]

[2]

IU3~RENCES

K. Mizuuchi, K. Yamamoto, and T. Taniuchi, “High-efficiency coupling
of a laser diodes in tapered proton-exchanged waveguides,” Electron.
Lett., vol. 26, no. 24, pp. 1992–1994, 1992.
M. S. Stem, “Semivectorial polarized finite difference method for optical
waveguides with arbitrary index profiles,” Inst. Elect. Eng. Proc., vol.
135, pt. J, no. 1, pp. 56-63, 1988.

[3]

[4]

[5]

[6]

[7]

[8]

P. L. LIU and B. J. L1, “Semivectorial beam-propagation method
for analyzing polarized modes of rib wav,?guides,” IEEE J. Quantum

Electron., vol. 28, pp. 778-782, 1992.
M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index
optical fibers,” Appl. Wrys. L.w., vol. 17, no. 24, pp. 3990–3998, 1978.
Y. Chung and N. Dagli, “An assessment of finite difference beam prop-
agation methods:’ IEEE J. Quantum Electron., vol. 26, pp. 1335–1339,
1990.
R. Scarmozzino and R. M. Osgood, Jr., “Comparison of finite-difference
and Fourier-transform solutions of the parabolic wave equation with
emphasize on integrated optics application,” J. Opt. Sot. Amer. A, vol.
8, no. 5, pp. 724-731, 1991.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes: The Art of Scient@c Computing London, United
Kingdom Cambridge University Press, pp. 550-554.
J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-
index waveguides in LiNb03: Appl. Phy,r. Lett., vol. 41, no. 7, pp.
607-608, 1982.


